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Stationary Periodical Structure Emitting an Infinite Number of Traveling Impulses in a
Model of a One-Dimensional Infinite Excitable Reaction—Diffusion System

Andrzej L. Kawczynski*

Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland

Received: November 18, 2008

A two-variable model of a one-dimensional infinite excitable reaction—diffusion system describing an expanding
stationary periodical structure emitting traveling impulses is presented. The model is based on two coupled
catalytic (enzymatic) reactions. The chemical scheme consists of mono- and bimolecular reactions.

Introduction

The Turing bifurcation is the best known scenario leading to
the formation of small amplitude stationary periodical structures
in reaction—diffusion systems.! In this bifurcation, a homoge-
neous stationary state corresponding to a stable focus, being
stable with respect to perturbations of the reactant concentration
over time, loses its stability due to infinitesimal spatial perturba-
tions. One should distinguish, however, between small and large
amplitude stationary periodical structures. Whereas small am-
plitude stationary periodical structures emerge due to infini-
tesimal perturbations and “wind” around the stable focus, large
amplitude structures appear far from the Turing bifurcation in
excitable or bistable reaction—diffusion systems perturbed by
excitations larger than some threshold value. Large amplitude
stationary periodical structures have been observed experimen-
tally in three different chemical systems: the chlorite—iodide—
malonic acid reactions (CIMA),? the ferrocyanide—iodate—sulfite
reaction,>* and in the Belousov—Zhabotinsky reaction dispersed
in a water-in-oil reverse microemulsion.

There are three known scenarios in which large amplitude
stationary periodical structures appear in excitable systems. A
stationary periodical structure may be built by the creation of
the next subsequent pulse ahead of previously created pulses
forming part of the structure. This scenario has been realized
in excitable'” as well as homogeneously oscillating models®
and may be called forward firing. In the second scenario
stationary periodical structures are created by a traveling impulse
which splits periodically, leaving behind subsequent stationary
pulses.> %2 The term “backfiring” has been coined for this
scenario. The Ising—Bloch bifurcation of a stationary front into
two counterpropagating fronts may generate a stationary peri-
odical structure in the third scenario.

It is noteworthy that chemical models of stationary periodical
structures consist of many variables.

The creation of a complex pattern is shown in the present
paper. An expanding stationary periodical structure emits an
infinite number of traveling impulses in an infinite system. A
similar effect has been observed in the Ru(bpy);**-catalyzed
BZ-AOT finite system.?? The stationary periodical structure
generates single phase waves behind which new fragments of
the stationary periodical structure appear. The difference
between the phenomenon observed in the Ru(bpy);>*-catalyzed
BZ-AOT system and the effect described in the present paper
is that in the first case a single phase wave is generated, whereas
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in the latter case an infinite number of traveling impulses appear.
Moreover, the model of the Ru(bpy);**-catalyzed BZ-AOT finite
system consists of four variables and is much more difficult to
analyze than the two-variable model presented below. The model
considered here describes an excitable system and has three
stationary states (a stable node, a saddle point, and an unstable
focus).

In the next chapter we describe the model of a 1D infinite
system. The results are presented in the next chapter. The last
chapter presents the conclusions.

Model

The model describes an open, infinite chemical system in
which two catalytic (enzymatic) reactions occur.
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An excess of the reactant S (activator) and the product P
(inhibitor) inhibits the transformation of S to P (eqs 2—7).
For simplicity we assume that the other catalytic (enzymatic)
reaction (8 and 9) occurs in its saturation regime. The system
is open due to reaction 1, in which S, plays the role of the
reservoir variable for the reactant S, and reaction 10, in which
the product P is irreversibly transformed into inactive reagent
Q. Note that the chemical scheme consists of elementary
reactions, which are monomolecular and bimolecular reactions
without autocatalytic steps.

We assume that the total concentrations of catalysts (enzymes)
E and E' are much smaller than the concentrations of the reactant
S and the product P. On the basis of the Tikhonov theorem?
the concentrations of both catalysts (enzymes) and their
complexes may be eliminated as fast variables, and the dynamics
of the system in the slow time scale may be described by the
two kinetic equations for the reactant S and the product P only.

The time—space behavior of the system for dimensionless
concentrations of the reactant s and the product p is described
by the following equations

as 823_ S
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ot ax (1 + s+ Ay (1 + p)
(11)
2
% _pIP = p-p B+ -
ot ax (1 + s+ Ay (1 + p)

(12)

where s = S/K,, and p = KsP are dimensionless concentrations
of the reactant S and the product P, respectively, D = D,/D; is
the ratio of the diffusion coefficients for the product D, and the
reactant Dy, x = (ksEy/DKy,)"? is the space coordinate, t = k3 Ey/
K, t' is dimensionless time, Ks= ks/k_s, and K, = (k—» + k3)/
ks, Ky = (k—g¢ + k7)/ke are the Michaelis constants. A; = k;So/
(k3Ep). Ay = k-1 Kin(k3Ey), Az = kalk—4Kn, B = KinKs, By = k7Ey'/
(ksEp) and B, = kg/(k3EKs) are dimensionless parameters. The
assumption that reactions 8 and 9 occur in its saturation regime
means that K" is much smaller than p. Therefore, the rate of
this reaction is constant and equal to —B.
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Figure 1. The nullclines for s (continuous line) and p (dotted line) on
the phase plane (p,s) for eqs 11 and 12 with neglected diffusion terms.
The unstable focus (UF) positioned at (13.36431468, 13.88559325) is
visible. The inset shows that the nullclines have two additional
intersection points: the stable node (SN) with coordinates (40.5859278,
1.22754247) and the saddle point (SP) at (38.144272305, 2.362912366).

Note that parameters B and D do not have any influence on
the stationary states or on the nullclines of the system (11 and
12). Therefore, B and D can be treated as bifurcation parameters.
For the remaining parameters the following values are assumed

A, =107 A,=107", A, = 0.505,
B, =799 %107, B, =4.65x 107"

At these values of the parameters the system (11 and 12) has
three stationary states: a stable node (pg, = 40.5859278, s, =
1.22754247), a saddle point at (p,= 38.144272305, s4,=
2.362912366), and a third stationary state (ps,= 13.36431468,
5= 13.88559325) whose stability depends on B. For B <
0.66935961 the third stationary state is the unstable focus and
the stable node is the sole attractor. At B = 0.66935961 the
unstable focus becomes stable but an unstable limit cycle appears
whose radius grows from O for larger B. The nullclines for the
activator s and the inhibitor p for the above values of the
parameters are shown in Figure 1. Only a small part of the upper
attracting branch of the nullcline for s is shown. The arrows on
the plane (p,s) show the vector direction fields for s (up or down)
and p (left or right). The unstable focus is visible in Figure 1.
The inset in Figure 1 shows the positions of the stable node
and the saddle point.

The initial value (Cauchy’s) problem for the system (11 and
12) in x € (0,%) is considered. Of course, no numerical approach
can be used for an infinite system. However, it is possible to
characterize asymptotic solutions for an infinite system by
solutions to a sufficiently large finite system with zero-flux
boundary conditions. The considered finite system should be
of a size guaranteeing that its solutions are sufficiently close to
the asymptotic solutions considered in the initial value problem.
In numerical calculations the following initial-boundary value
problem is solved numerically

5(0,x) = 20.0; p(0,x) = 35.0 for x 0 [0,0.5] (13)

5(0,x)=1.22754; p(0,x) = 40.5859 for x U [0.5, L]
(14)

as as ap ap
ox®  axl ox®  oxt (15
The initial values of s and p in the unexcited interval x €
[0.5, L] are approximately equal to their values at the stable
node. The numerical calculations are performed for increasing
sizes of the system L. The numerical solutions are realized for
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Figure 2. Time—space evolution of s(z,x) in the system for B = 0.65
and D = 1.876. Four subsequent traveling impulses are seen which
leave behind an expanding stationary periodical structure. In an infinite
system an infinite number of traveling impulses will be generated by
the expanding stationary periodical structure.

L at which the properties of a given asymptotic solution are
clearly visible.

Equations 11 and 12 are solved using the Cranck—Nicholson
scheme for the diffusion terms and the fourth-order Runge—Kutta
algorithm for the kinetic terms. In order to avoid numerical
artifacts we have changed (decreasing and increasing) the spatial
step in the range from 0.0025 to 0.01 and the time step in the
range from 0.5 to 2. The results of the numerical calculations
presented below do not depend on the used spatial and time
steps in the ranges given above.

Results

An example of space—time evolutions of the initial excitation
given by (13) and (14) of eqs 11 and 12 with B = 0.65 and D
= 1.876 is shown in Figure 2 for L = 300.0. The initially formed
impulse leaves behind it a single surviving pulse from which a
new impulse is created. This new impulse divides periodically,
leaving behind several surviving pulses from which a stationary
periodical structure is formed asymptotically. The periodical
division of the new impulse occurs several times. However,
some successive pulses do not survive and the new impulse
continues its spreading and leaves behind decaying pulses. The
last surviving pulse forms the next new impulse, which again
leaves behind surviving pulses. And again some successive pulse
decays but the new impulse spreads, leaving behind decaying
pulses. The last surviving pulse formed before the creation of
the decaying pulse generates the next new impulse. The above
scenario of the creation of surviving pulses followed by the
generation of decaying pulses repeats infinitely. An infinite
number of traveling impulses is generated asymptotically, behind
which a stationary periodical structure forms. The stationary
periodical structure occupies an increasing area. The interval
in space occupied by the stationary periodical structures grows
with velocity equal to the velocity of the first traveling impulse.
One may treat the asymptotic pattern as a source of traveling
impulses generated by the expanding stationary periodical
structure. The generation of only the first four traveling impulses
is shown in Figure 2, but the stationary periodical structure will
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spread to infinity and an infinite number of traveling impulses
will be emitted in infinite systems. Patterns of the type shown
in Figure 2 appear in a very narrow range of B and D inside
the tetragon limited by (B, = 0.627, D, = 2.01), (B, =
0.66935961, D, = 1.73), (B. = 0.66935961, D. = 1.74), (Bg =
0.63, D4 = 2.03). With increasing D the traveling impulses are
more and more rarely generated in space and their number grows
more and more slowly in time. If B crosses the upper side of
the tetragon, the stationary periodical structure is built up just
behind the first traveling impulse. Below the lower side of the
tetragon the traveling impulse leaves decaying pulses behind.

Discussion

The existence of an expanding stationary periodical structure
emitting traveling impulses follows from the theorem about the
dependence of asymptotic solutions on parameters, which for
the infinite system considered above may be formulated as
follows. If a traveling impulse which periodically leaves behind
it exclusively decaying pulses exists for some range of the
diffusion coefficient, and a traveling impulse which periodically
leaves behind it exclusively surviving pulses (forming an
expanding stationary periodical structure) exists for another
range of the diffusion coefficient, then for the diffusion
coefficient range between these two ranges the survival of the
pulses may be interrupted by the decaying of the pulses, and
patterns of the type shown in Figure 2 may appear. The
transition from one range of the diffusion coefficient to the other
is very sharp, and it is difficult to decide if the number of
surviving pulses grows by 1 or by some number greater than 1.

The model described in the present paper can be treated as
an example of an excitable dynamical system. Due to the pres-
ence of saddle point, perturbations of the system above the
separatrix going to the saddle point cause the trajectory of the
system to evolve around the unstable focus before returning to
the stable node. This property of the model causes the traveling
impulses generated in it to display features which are not found
in excitable systems with one stable stationary state. The model
(11 and 12) has been used previously for the generation of large
amplitude stationary periodical structures created by subsequent
divisions of the traveling impulse.'* Moreover, two-dimensional
(2D) stationary patterns mimicking all capital Latin?* as well
as Old Hebrew? letters have been generated in the same model.
We have also shown that the absolutely stable traveling impulse
in a 1D system becomes unstable in a 2D system provided that
the size of the system perpendicular to the impulse propagation
is sufficiently large.?®

It is worth noting that our model is also realistic and could
be realized in experiments in a 1D CFUR with two enzymatic
reactions. One of them should be inhibited by its reactant and
product. There are many enzymes which are inhibited by an
excess of their reactants and products. Examples include
invertase inhibited by sucrose (reactant) and by fructose and
glucose (products), xantine oxidase inhibited by xantine (reac-
tant) and ureate (product), acetylcholinesterase inhibited by
acetylcholine and choline, and many others.?”?

The list of possible asymptotic behaviors in nonlinear
reaction—diffusion systems is far from complete. The effect
described above supplements the list by adding to it a previously
unknown asymptotic solution. We hope that our result will be
helpful in searches for the described phenomenon in experiments.
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